Tutorial 1

1. Let V be an inner product space and $T \in \mathcal{L}(V)$ be such that for all $u, v \in V$,

$$
\langle T(u), T(v)\rangle=\langle u, v\rangle
$$

(a) What can you say about T ?
(b) If $\lambda \in \mathbb{F}$ is an eigenvalue of T, what can you say about λ ?
2. Let V be an inner product space and $S, T \in \mathcal{L}(V)$ be such that for all $u, v \in V$,

$$
\langle S(u), v\rangle=\langle T(u), v\rangle
$$

Show that $S=T$.
3. Let V be an inner product space. Show that for all $u, v \in V$,

$$
\|u\|-\|v\| \leq\|u-v\|
$$

4. (a) Let V be a complex inner product space and $T \in \mathcal{L}(V)$ be such that for all $u, v \in V$,

$$
\begin{equation*}
\langle T(u), v\rangle+\langle T(v), u\rangle=0 \tag{1}
\end{equation*}
$$

What can you say about T ?
(b) Now consider $V=\mathbb{R}^{2}$ with the standard inner product. Show there exists $T \in \mathcal{L}(V)$ such that Eq. (1) holds for all $u, v \in V$ but T does not have the property found in (a).
5. (6.A.22) Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Show that

$$
\left(\frac{a_{1}+\cdots+a_{n}}{n}\right)^{2} \leq \frac{a_{1}^{2}+\cdots+a_{n}^{2}}{n}
$$

When do we have equality?
6. (Titu's Lemma) Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be positive real numbers. Show that

$$
\frac{\left(a_{1}+\cdots+a_{n}\right)^{2}}{b_{1}+\cdots+b_{n}} \leq \frac{a_{1}^{2}}{b_{1}}+\cdots+\frac{a_{n}^{2}}{b_{n}}
$$

When do we have equality?
7. (6.A.6) Let V be an inner product space and let $u, v \in V$. Show that $\langle u, v\rangle=0$ if and only if $\|u\| \leq\|u+a v\|$ for all $a \in \mathbb{F}$.

